GeneticAlgorithm.ps1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 |
<#
script for learning genetics algorithms # locus [łac.], genet. pozycja w chromosomie zajmowana przez dany gen; GA tutorial - https://www.tutorialspoint.com/genetic_algorithms/index.htm PowerShell Multithreading: A Deep Dive - https://adamtheautomator.com/powershell-multithreading/ MathNet - https://www.sans.org/blog/truerng-random-numbers-with-powershell-and-math-net-numerics/ charts in Powershell - https://docs.microsoft.com/en-us/archive/blogs/richard_macdonald/charting-with-powershell Trace-Command -Name ParameterBinding, TypeConversion -Expression {.\start-genalg.ps1} -PSHost PS2EXE: Invoke-ps2exe -inputFile .\start-genalg.ps1 -outputFile ga_x64.exe -x64 -noConsole -MTA , - https://devblogs.microsoft.com/powershell/array-literals-in-powershell/ posortowanie tabeli hash po value i pobranie z pierwszego rekordu wartsci value: ($b.GetEnumerator() | Sort-Object -Descending -Property value |Select-Object -First 1).value convert array to hash table: $d=@{} $i=0 ($population).foreach{$d[$i]=$_;$i++} Get-Random -Minimum 0.0 -maximum 1.0 #> #8 function Start-GA { [CmdletBinding()] param ( [int]$Generations = 20, [ValidateScript( { if ($_ -eq 0) { throw "Population size can not be [$_]!" } elseif ($_ -gt 0 -and ($_ % 2) -ne 0 ) { throw "Population size [$_] is not even!" } else { $true } })] [int]$PopulationSize = 30, [int]$ChromosomeSize = 20, [double]$CrossOverProbability = 0.6, [double]$MutationProbability = 0.001, [Validateset("Roulette", "Tournament")] $Selection = "Roulette", [switch]$Log, [switch]$Zeros, [switch]$ShowGraph, [switch]$ShowChart, [switch]$ReturnAllGenerations ) $MeasureScript = [system.diagnostics.stopwatch]::startnew() #7 #25 if ($exportExcel) { if (Get-Module -ListAvailable -Name importexcel) { try { import-module importexcel } catch { Write-Error "Error importing module 'importexcel'" } } else { write-warning "Module 'ImportExcel' wasn't found. Invoke 'install-module importexcel'." } } if ($ShowGraph) { if (Get-Module -ListAvailable -Name Graphical) { try { import-module Graphical } catch { Write-Error "Error importing module 'Graphical'" } } else { #20 write-warning "Module 'Graphical' wasn't found. Invoke 'install-module Graphical'." } } #7 if (!(get-module importexcel)) { write-warning "Module 'ImportExcel wasn't found. Invoke 'install-module importexcel'." } if ($Log) { Write-Log "$(Get-Date): [Initialize GA]" } if (Get-Variable m -ErrorAction SilentlyContinue) { Remove-Variable m -Scope script } if (Get-Variable _crossover -ErrorAction SilentlyContinue) { Remove-Variable _crossover -Scope script } if (Get-Variable _functionExecutionTime -ErrorAction SilentlyContinue) { Remove-Variable _functionExecutionTime -Scope script } #4 new-variable -scope script -name m -Value 0 #9 new-variable -scope script -name _crossover -Value 0 #5 New-Variable -Scope script -Name _functionExecutionTime -Value 0 $_crossoverGlobalCount = 0 #9 $_mutations = 0 #4 $_SelectionGlobalExecutionTime = 0 $_CrossoverGlobalExecutionTime = 0 $_MutationGlobalExecutionTime = 0 if ($Log) { Write-Log "$(Get-Date): Number of iterations/generations: [$($generations)]" Write-Log "$(Get-Date): Population size (chromosomes): [$($populationSize)]" Write-Log "$(Get-Date): Chromosome Size (genes): [$($ChromosomeSize)]" Write-Log "$(Get-Date): Crossover probability: [$($CrossOverProbability)]" Write-Log "$(Get-Date): Mutation probability: [$($MutationProbability)]" } if ($zeros) { [array]$population = generatePopulation -zeros -chromosomeCount $PopulationSize -geneCount $ChromosomeSize } else { [array]$population = generatePopulation -chromosomeCount $PopulationSize -geneCount $ChromosomeSize } if ($Log) { Write-Log "$(Get-Date): Population was generated." } #11 if ($zeros -and $log) { Write-Log "$(Get-Date): Used param '-zeros'. Population with all genes = 0." } if ($Log) { Write-Log "$(Get-Date): Generation/Iteration: [0]" } if ($zeros) { $populationFitnessValue = GenerateFitnessValue_Population -population $population $fitnessPopulation_max = 0 $fitnessPopulation_avg = 0 $fitnessPopulationZero = $fitnessPopulation = 0 } else { $populationFitnessValue = GenerateFitnessValue_Population -population $population $fitnessPopulation_max = ($populationFitnessValue | Measure-Object -Maximum).Maximum $fitnessPopulation_avg = ($populationFitnessValue | Measure-Object -Average).Average $fitnessPopulationZero = $fitnessPopulation = PopulationStatictics -population $population -fitness } if ($Log) { Write-Log "$(Get-Date): Value of the fitness function of population: [$($fitnessPopulation)]" } if ($Log) { Write-Log "$(Get-Date): Maximum value of the fitness function for a chromosome in the population: [$($fitnessPopulation_max)]" } if ($Log) { Write-Log "$(Get-Date): Average value of the fitness function for the population: [$($fitnessPopulation_avg)]" } $IndexBestGeneration_2 = 0 $fitnessPopulationZero_2 = $fitnessPopulationZero [array[]]$allGenerations += , @(0, $fitnessPopulation, $population) # Main genetic algorithm iteration region for ($i = 1; $i -le $generations; $i++) { $fitnessPopulation = 0 if ($Log) { Write-Log "$(Get-Date): No. Generation/Iteration: [$($i)]" } if ($Log) { Write-Log "$(Get-Date): Selection." } switch ($selection) { "roulette" { $_ReproductionItems = Roulette -population $population -fitness $populationFitnessValue -Population_Size $populationSize -_ChromosomeSize $ChromosomeSize } "tournament" { $_ReproductionItems = Tournament -population $population -fitness $populationFitnessValue -Population_Size $populationSize } Default {} } $_SelectionGlobalExecutionTime = $_SelectionGlobalExecutionTime + $script:_functionExecutionTime $script:_functionExecutionTime = 0 if ($Log) { Write-Log "$(Get-Date): Crossover." } $CrossovertPopulation = Crossover -population $_ReproductionItems -ChromosomeSize $ChromosomeSize -crossoverProb $CrossOverProbability -Population_Size $populationSize $_CrossoverGlobalExecutionTime = $_CrossoverGlobalExecutionTime + $script:_functionExecutionTime $script:_functionExecutionTime = 0 #9 $_crossoverGlobalCount = $_crossoverGlobalCount + $script:_crossover if ($Log) { Write-Log "$(Get-Date): Mutating." } $mutedPopulation = Mutation -population $CrossovertPopulation -mutationProb $MutationProbability $_MutationGlobalExecutionTime = $_MutationGlobalExecutionTime + $script:_functionExecutionTime $script:_functionExecutionTime = 0 #4 $_mutations = $_mutations + $script:m $populationFitnessValue = GenerateFitnessValue_Population -population $mutedPopulation $fitnessPopulation_max = ($populationFitnessValue | Measure-Object -Maximum).Maximum $fitnessPopulation_avg = ($populationFitnessValue | Measure-Object -Average).Average $fitnessPopulation = PopulationStatictics -population $mutedPopulation -fitness if ($Log) { Write-Log "$(Get-Date): Value of the fitness function of population: [$($fitnessPopulation)]" } if ($Log) { Write-Log "$(Get-Date): Maximum value of the fitness function for a chromosome in the population: [$($fitnessPopulation_max)]" } if ($Log) { Write-Log "$(Get-Date): Average value of the fitness function for the population: [$($fitnessPopulation_avg)]" } if ($fitnessPopulationZero_2 -lt $fitnessPopulation) { # first generation index with max $IndexBestGeneration_2 = $i $fitnessPopulationZero_2 = $fitnessPopulation } # building generations data [array[]]$allGenerations += , @($i, $fitnessPopulation, $mutedPopulation) $population = $mutedPopulation if ($Log) { Write-Log "$(Get-Date): End generation/iteration (index): [$($i)]" } Write-Progress -Activity "Reproduction" -Status "Progress:" -PercentComplete ($i / $generations * 100) } if ($Log) { Write-Log "$(Get-Date): End of all generations/Iterations." } #9 if ($Log) { Write-Log "$(Get-Date): Number of all crossovers: [$_crossoverGlobalCount]" } #4 if ($Log) { Write-Log "$(Get-Date): Number of all mutations: [$_mutations]" } #5 if ($Log) { Write-Log "$(Get-Date): Global selection execution time: [$_SelectionGlobalExecutionTime ms]" } if ($Log) { Write-Log "$(Get-Date): Global crossover execution time: [$_CrossoverGlobalExecutionTime ms]" } if ($Log) { Write-Log "$(Get-Date): Global mutation execution time: [$_MutationGlobalExecutionTime ms]" } $IndexBestGeneration = ($allGenerations | sort-object @{Expression = { $_[1] }; Ascending = $false } | Select-Object @{expression = { $_[0] }; Label = "Generation" }, @{expression = { $_[1] }; Label = "Fitness" } -First 1).Generation if ($Log) { Write-Log "$(Get-Date): Index of generation with highest value of fitness function: [$IndexBestGeneration]" } if ($Log) { Write-Log "$(Get-Date): Index of generation with highest value of fitness function: [$IndexBestGeneration_2]" } if ($Log) { Write-Log "$(Get-Date): Highest value of fitness function: [$($allGenerations[$IndexBestGeneration][1])]" } if ($zeros) { $FitnessGain = (($allGenerations[$IndexBestGeneration_2][1] - $fitnessPopulationZero) * 100) } else { $FitnessGain = (($allGenerations[$IndexBestGeneration_2][1] - $fitnessPopulationZero) / $fitnessPopulationZero) * 100 } $FitnessGain = "{0:n2}" -f $FitnessGain if ($Log) { Write-Log "$(Get-Date): Fitness gain (((f(max)-f(0))/f(0))*100): [$FitnessGain %]" } write-information -MessageData "Best generation: [$IndexBestGeneration_2]" -InformationAction Continue write-information -MessageData "Best fitness: [$($allGenerations[$IndexBestGeneration_2][1])]" -InformationAction Continue write-information -MessageData "Fitness gain: [$FitnessGain %]" -InformationAction Continue $AllGenerationFitness = $allGenerations.foreach{ $psitem[1] } if ($showgraph) { Show-Graph $AllGenerationFitness -XAxisTitle "Generations" -YAxisTitle "Fitness" -GraphTitle "GA" } if ($Log) { Write-Log "$(Get-Date): Script execution time: [$($MeasureScript.ElapsedMilliseconds) ms]" } if ($Log) { Write-Log "$(Get-Date): [End of GA]" } if ($Log) { Write-information -MessageData "LOG: $env:TEMP\GA.log" -InformationAction Continue } #10 $allGenerations | ConvertTo-Json | Out-File "$env:TEMP\allGenerations.json" write-information -MessageData "OUT DATA: $env:TEMP\allGenerations.json" -InformationAction Continue #19 if ($ShowChart) { # show and save ShowChart -AllGenerationFitness $AllGenerationFitness -ShowChart -SaveChart } else { # save only ShowChart -AllGenerationFitness $AllGenerationFitness -SaveChart } if ($ReturnAllGenerations) { return $allGenerations } <# .SYNOPSIS Genetic Algorithm in Powershell. .DESCRIPTION Powershell module with implementation of genetic algorithm (GA). .PARAMETER Generations The parameter defines the number of recalculation iterations for the population before we complete the algorithm. The parameter has a default value and it is 20 generations. .PARAMETER PopulationSize We define the size of the population used in the GA. Size is understood as the number of genomes - in this abbreviation a genome is equal to a chromosome. The size of the population is constant for the duration of the algorithm's operation and must be even. The parameter has a default value and it is 30 genomes. .PARAMETER ChromosomeSize The parameter determines the number of genes in the chromosome. The parameter has a default value and it is 20 chromosomes. .PARAMETER CrossOverProbability Determines the probability of crossing two chromosomes at a crossing point. The crossing point is random and is not a parameter. The parameter has a default value and it is 0.6. .PARAMETER MutationProbability The parameter determines the probability of a gene mutation in the chromosome. A mutation probability is generated for each gene. The parameter has a default value and it is 0.001. .PARAMETER Selection The value of this parameter specifies the type of selection that will be used in the iteration of the genetic algorithm. The parameter has a defined list of values, they are: 1. "Roulette" 2. "Tournament" "Roulette" is default one. The default value has been chosen because of its better performance. .PARAMETER Log The switch determines whether a log file from the algorithm's operation is to be generated. If there is a log file, new data will be added to it. It is not possible to specify the path and file name. The default value is $env:TEMP\GA.log .PARAMETER Zeros The switch specifies that the initial population consists of chromosomes, where all genes are 0. By default, the initial population is randomly generated. .PARAMETER ShowGraph After the algorithm is completed, an ASCII chart is generated. Draws graph in the Powershell console. The graph is the value of the objective function for the initial population and population from all iterations of the algorithm. The Graphical module is required. .PARAMETER ShowChart After the algorithm is completed, an PNG chart is generated. The graph is the value of the objective function for the initial population and population from all iterations of the algorithm. The [System.Windows.Forms] and [System.Windows.Forms.DataVisualizationmodule] namespaces are used. Regardless of whether the switch is turned on, a PNG image is generated and saved in $env:TEMP\GA.png .PARAMETER ReturnAllGenerations Enabled parameter causes the function to return result array of all generations. The first element is the initial generation. .EXAMPLE Start-GA .EXAMPLE Start-GA -Log -ShowGraph .EXAMPLE Start-GA -ShowChart .EXAMPLE Start-GA -Generations 100 -PopulationSize 40 -MutationProbability 0.009 -zeros -Log -ShowGraph .EXAMPLE [array[]]$GAOutput=Start-GA -Generations 80 -ChromosomeSize 60 To display populations from 30 iterations: $GAOutput[30][2].foreach{"$_"} .LINK https://github.com/voytas75/genetic-algorithm .NOTES My post on reddit to request for comments: https://www.reddit.com/r/PowerShell/comments/i5csrc/genetic_algorithm_in_powershell/ #> } function generateChromosome { param ( [ValidateNotNullorEmpty()] [int]$geneCount, #18 [switch]$zeros ) <# function generate vale of gene powershell statistics check .net statistics #> $_chromosome = @() if ($zeros) { return [array]$_chromosome = (1..$genecount).foreach{ 0 } } else { return [array]$_chromosome = (1..$genecount).foreach{ 0..1 | get-random } } } function generatePopulation { [CmdletBinding()] param ( [ValidateNotNullorEmpty()] [int]$chromosomeCount, #18 [ValidateNotNullorEmpty()] [int]$geneCount, #18 [switch]$zeros ) <# function generates chromosome one or more. default values are definied. #> $_population = @() if ($zeros) { (1..$chromosomeCount).foreach{ $_population += , [array](generateChromosome -zeros -geneCount $geneCount) } } else { (1..$chromosomeCount).foreach{ $_population += , [array](generateChromosome -geneCount $geneCount) } } return $_population } function PopulationStatictics { param ( [ValidateNotNullorEmpty()] [array[]]$population, [switch]$Count, [switch]$fitness, [switch]$Maximum, [switch]$Average, [switch]$display ) <# param options - https://learn-powershell.net/2014/02/04/using-powershell-parameter-validation-to-make-your-day-easier/ #> $_FitnessSum = 0 if ($fitness) { #$_fitness = GenerateFitnessValue_Population -population $population (GenerateFitnessValue_Population -population $population).foreach{ $_FitnessSum += $PSItem } return $_FitnessSum } elseif ($Count) { return $population.count } elseif ($Maximum) { return $population.count } elseif ($Average) { return $population.count } elseif ($display) { $population.foreach{ "[$_]" } } else { return $null } } function GenerateFitnessValue_Population { param ( [ValidateNotNullorEmpty()] [array[]]$population ) <# example fitness function sum of genes is odd #> $_FitnessPopulationItems = @() $_GenerateSumGenes = $population.ForEach{ ($_ -match 1).count } # array of sums 1 in genes return [array]$_FitnessPopulationItems = $_GenerateSumGenes.foreach{ if ([bool]($psitem % 2)) { $PSItem }else { 0 } } } function Roulette { param ( [ValidateNotNullorEmpty()] [array[]]$population, [ValidateNotNullorEmpty()] [array]$fitness, $Population_Size, $_ChromosomeSize ) #5 $MeasureFunction = [system.diagnostics.stopwatch]::startnew() $script:_functionExecutionTime = 0 $_FitnessSum = 0 $_NormalizeItem = @() $_aggregatesum = 0 $fitness.foreach{ $_FitnessSum += $PSItem } #13 #15 if ($_FitnessSum -eq 0 -and -not $zeros) { #$_FitnessSum.foreach{ "Fitness sum: [$PSItem]" } #$population.foreach{ "Population item: [$PSItem]" } #"[STOP]" #14 if ($Log) { Write-Log "$(Get-Date): [EXIT] Fitness is 0. Terminating." } if ($Log) { Write-Log "$(Get-Date): [End of GA]" } Write-output "[EXIT] Fitness is 0. Terminating." exit } elseif ($_FitnessSum -gt 0) { $_NormalizeItem = $fitness.foreach{ $Psitem / $_FitnessSum } } elseif ($_FitnessSum -eq 0 -and $zeros) { #$_NormalizeItem = $fitness.foreach{ 0 } #16 return (generatePopulation -zeros -chromosomeCount $Population_Size -geneCount $_ChromosomeSize) } [array]$AgregateSum = $_NormalizeItem.foreach{ $_aggregatesum += $PSItem; $_aggregatesum } [Object]$Random = New-Object System.Random #17 #[int]$_popcount = PopulationStatictics -population $population -count [int]$_popcount = $Population_Size [array]$_randomvalue = (1..$_popcount).foreach{ $Random.NextDouble() } $i = $j = 0 $_reproduceItems = @() do { $j = 0 if ($_Normalizeitem[0] -lt 1) { do { if ($_randomvalue[0] -le $AgregateSum[0] -or $_randomvalue[$i] -lt $AgregateSum[0]) { break } $j++ } until (($_randomvalue[$i] -gt $AgregateSum[$j - 1] -and $_randomvalue[$i] -le $AgregateSum[$j]) -or $AgregateSum[$j - 1] -eq 1 -or $j -gt $_popcount) } [array]$_reproduceItems += , @($population[($j)]) $i++ } until ($i -ge $_popcount) #5 $script:_functionExecutionTime = $MeasureFunction.ElapsedMilliseconds if ($Log) { Write-Log "$(Get-Date): Selection 'Roulette' execution time: ($script:_functionExecutionTime ms)" } return $_reproduceItems } function Tournament { param ( [ValidateNotNullorEmpty()] [array[]]$population, [ValidateNotNullorEmpty()] [array]$fitness, $Population_Size ) #5 $MeasureFunction = [system.diagnostics.stopwatch]::startnew() $_Kindividuals = 4 #17 $_PopulationWinners = @() $_PopulationSize = $Population_Size for ($ii = 0; $ii -lt $_PopulationSize; $ii++) { $_population_hashtable_temp = @{} $_populationHashTable = @{} $i = 0 # convert array to hash table: $_populationHashTable = ($population).foreach{ $_population_hashtable_temp + @{item = $i; genome = $_; fitness = $fitness[$i] }; $i++ } # get items to tournament $_TournamentPlayers = get-random -InputObject $_populationHashTable -count $_Kindividuals # sort items by fitness $_TournamentPlayers_SortFitness = $_TournamentPlayers.GetEnumerator() | Sort-Object -property { $_.fitness } -descending $_TurnamentWinner = @{} # sorting items by fitness and take first one $_TurnamentWinner = $_TournamentPlayers_SortFitness | Select-Object -first 1 # building Tournament winner as population to mutate $_PopulationWinners += , ($population[$_TurnamentWinner.item]) } #5 $script:_functionExecutionTime = $MeasureFunction.ElapsedMilliseconds if ($Log) { Write-Log "$(Get-Date): Selection 'Tournament' execution time: ($script:_functionExecutionTime ms)" } return $_PopulationWinners } function Crossover { param ( [ValidateNotNullorEmpty()] [array[]]$population, [ValidateNotNullorEmpty()] $ChromosomeSize, [ValidateNotNullorEmpty()] $crossoverProb, $Population_Size ) $MeasureFunction = [system.diagnostics.stopwatch]::startnew() $script:_crossover = 0 #9 [Object]$Random = New-Object System.Random #17 $_PopulationSize = $Population_Size for ($i = 0; $i -lt $_PopulationSize; $i += 2) { if (($Random.NextDouble()) -le $crossoverProb) { $script:_crossover++ #9 $_crossoverPoint = 1..($ChromosomeSize - 2) | get-random [array[]]$_crossoverpopulation += , ($population[$i][0..$_crossoverPoint] + $population[$i + 1][($_crossoverPoint + 1)..($ChromosomeSize)]) [array[]]$_crossoverpopulation += , ($population[$i + 1][0..$_crossoverPoint] + $population[$i][($_crossoverPoint + 1)..($ChromosomeSize)]) } else { [array[]]$_crossoverpopulation += , ($population[$i]) [array[]]$_crossoverpopulation += , ($population[$i + 1]) } } if ($Log) { Write-Log "$(Get-Date): Number of all crossovers in population: [$script:_crossover]" } #9 $script:_functionExecutionTime = $MeasureFunction.ElapsedMilliseconds if ($Log) { Write-Log "$(Get-Date): Crossover execution time: ($script:_functionExecutionTime ms)" } return $_CrossoverPopulation } function Mutation { param ( [ValidateNotNullorEmpty()] [array[]]$population, [ValidateNotNullorEmpty()] $mutationProb ) $MeasureFunction = [system.diagnostics.stopwatch]::startnew() [Object]$Random = New-Object System.Random $i = 0 $script:m = 0 foreach ($items in $population) { $j = 0 foreach ($item in $items) { if (($Random.NextDouble()) -le $mutationProb) { # we are in! mutation time! Lets change some genes! #4 $script:m++ if ($population[$i][$j] -eq 1) { $population[$i][$j] = 0 if ($Log) { Write-Log "$(Get-Date): Mutation! Item [$i], Gene [$j] 1 -> 0" } } else { $population[$i][$j] = 1 if ($Log) { Write-Log "$(Get-Date): Mutation! Item [$i], Gene [$j] 0 -> 1" } } } $j++ } $i++ } if ($Log) { Write-Log "$(Get-Date): Number of all mutations in population: [$script:m]" } #5 $script:_functionExecutionTime = $MeasureFunction.ElapsedMilliseconds if ($Log) { Write-Log "$(Get-Date): Mutation execution time: ($script:_functionExecutionTime ms)" } return $population } #19 function ShowChart { param ( $AllGenerationFitness, [switch]$SaveChart, [switch]$ShowChart ) # CHART # load the appropriate assemblies [void][Reflection.Assembly]::LoadWithPartialName("System.Windows.Forms") [void][Reflection.Assembly]::LoadWithPartialName("System.Windows.Forms.DataVisualization") # create chart object $Chart = New-object System.Windows.Forms.DataVisualization.Charting.Chart $Chart.Width = 1000 $Chart.Height = 400 $Chart.Left = 40 $Chart.Top = 30 # create a chartarea to draw on and add to chart $ChartArea = New-Object System.Windows.Forms.DataVisualization.Charting.ChartArea $Chart.ChartAreas.Add($ChartArea) # add data to chart #$Cities = @{London = 7556900; Berlin = 3429900; Madrid = 3213271; Rome = 2726539; Paris = 2188500 } [void]$Chart.Series.Add("Data") $gg = 0 $Chart.Series["Data"].Points.DataBindXY([int[]]$AllGenerationFitness.foreach{ , ($gg++) }, [int[]]$AllGenerationFitness ) # Find point with max/min values and change their colour $maxValuePoint = $Chart.Series["Data"].Points.FindMaxByValue() $maxValuePoint.Color = [System.Drawing.Color]::Red $minValuePoint = $Chart.Series["Data"].Points.FindMinByValue() $minValuePoint.Color = [System.Drawing.Color]::Green # change chart area colour #$Chart.BackColor = [System.Drawing.Color]::Transparent # add a save button $SaveButton = New-Object Windows.Forms.Button $SaveButton.Text = "Save" $SaveButton.Top = 500 $SaveButton.Left = 450 $SaveButton.Anchor = [System.Windows.Forms.AnchorStyles]::Bottom -bor [System.Windows.Forms.AnchorStyles]::Right $SaveButton.add_click( { $Chart.SaveImage($env:TEMP + "\GA.png", "PNG") }) if ($SaveChart) { $Chart.SaveImage($env:TEMP + "\GA.png", "PNG") write-information -MessageData "PNG: $env:TEMP\GA.png" -InformationAction Continue } if ($ShowChart) { # display the chart on a form $Chart.Anchor = [System.Windows.Forms.AnchorStyles]::Bottom -bor [System.Windows.Forms.AnchorStyles]::Right -bor [System.Windows.Forms.AnchorStyles]::Top -bor [System.Windows.Forms.AnchorStyles]::Left $Form = New-Object Windows.Forms.Form $Form.Text = "PowerShell Chart" $Form.Width = 1100 $Form.Height = 600 $Form.controls.add($Chart) $Form.Add_Shown( { $Form.Activate() }) #$Form.controls.add($SaveButton) $Form.ShowDialog() } } function Write-Log { param( [string]$logstring ) [string]$Logfile = "$env:TEMP\GA.log" Add-Content $logfile -Value $logstring -Force } |